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Purpose of this Talk

Forcing was first invented by Paul Cohen in his proof of the independence of
the Continuum Hypothesis from the usual axioms of set theory. The goal of
this talk today is give an introduction to the method of forcing, while covering
the necessary preliminaries, and, also, give a proof of the independence of CH.
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The Axioms of ZFC and Independence

Set theory is a first order theory whose axioms are specified by the
Zermelo-Fraenkel axioms plus the Axiom of Choice (ZFC). They assert what
things should be true about how sets behave in a mathematical sense.

ZFC

We won’t give a statement of every axiom or axiom schema in ZFC, but they
include things that we as mathematicians use every day.

1. Axiom of Extensionality: two sets x and y are equal if they contain the
same elements.

2. Axiom schema of Replacement: the image of any set under a function will
be a set.

3. Axiom of Powerset: for any set x, there exists a set consisting of all
subsets of x.
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Independence and Consistency

Consistency

A theory T is said to be consistent if and only if it cannot prove ϕ∧¬ϕ for any
sentence ϕ.

Thanks to Gödel, we cannot prove the consistency of ZFC!

Consistency of a Sentence

A statement ϕ is consistent in a theory T if there is no proof of ¬ϕ from T .

Independence

Given a theory T and a sentence ϕ, then ϕ is said to be independent if there is
no proof of ϕ or ¬ϕ from T .

What we want to show is that the Continuum Hypothesis is, in fact,
independent of ZFC. To do this, it would be enough to show that both CH and
¬CH are both consistent.
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Models

Model

Given a theory T , a model of T is a set that satisfies all the axioms of T .

Example

Take T to be theory of groups. Its axioms are the familiar ones. Then a model
of T will simply be a group. For a concrete example, S = {z ∈ C : |z| = 1} is
a group where the group operation is multiplication. So S is a model of group
theory.

Models are quite nice, but quite difficult to get our hands on. In particular, in
ZFC, it is only consistent that a countable model of ZFC exists - not even
provable. However, the consistency of ZFC implies there is indeed a countable
one.
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Models (cont.)

Our countable model guaranteed to exists given the consistency of ZFC also
has another property of being transitive.

Transitivity

A set x is called transitive if whenever y ∈ x and z ∈ y, then z ∈ x. It is
transitive with respect to the ∈ predicate.

This property will be incredibly useful. It guarantees that ordinals in our model
M are real ordinals. They are not subsets that look like ordinals, but are indeed
ordinals that appear in our universe V . Moreover, it means that M will believe
it has all the ordinals of V even though it has countably many of them.
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Models (cont.)

I should clarify what is necessarily meant by a model M satisfying the axioms
of ZFC. So, I will list some facts about models.

Fact 1

Models of ZFC are indeed sets inside the universe V . They satisfy the axioms
of ZFC relatively. Meaning, that the axioms are relativized to the set M - all
quantifiers are restricted to being in M . So, every time you see a ∀x, restrict it
to ∀x ∈ M and similarly for ∃x gets restricted to ∃x ∈ M .

Fact 2

A countable transitive model M does not really contain all the cardinals of the
universe V . Otherwise, it wouldn’t be countable. But it contains a relativized
version of them. How? Being a bijection is purely a question of the existence of
a set (a function). So, two sets can be in bijection in the universe V but when
you look at them inside a model M , M can fail to contain the set that is the
bijection between them. So, when we talk about cardinals being inside of M ,
we are always referencing the relativized version of them, and not the ones that
exists in the universe V .
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Important Metatheorems

Here we will give two very important metatheorems relating to ZFC that will
end up allowing us to use forcing to show independence of results.

Metatheorem 1

If ZFC is consistent, then so is ZFC + there exists a countable transitive model
M of ZFC.

Denote the above as ZFC+M .

Metatheorem 2

Suppose ϕ is a sentence of set theory. If we can find a model of ZFC that
satisfies ϕ in ZFC+M , then, if ZFC is consistent then so is ZFC + ϕ.

So, the goal of finding independence results is to construct models that satisfy
ϕ and ¬ϕ, so we will know that ϕ and ¬ϕ will be consistent with ZFC, hence
implying ϕ is independent.
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Forcing Pre-example

Before we talk about forcing, I want to introduce an example of something we
should all be familiar about.

Example

Let’s take the polynomial p(x) = x2 + 1 over Q[x]. The polynomial p is
irreducible over Q. So, can we find the smallest field extension K over Q such
that p factors completely in K? Of course we can, it is simply just Q[i]. Along
the way, we must prove that Q[i] is, in fact, itself a field and it’s the smallest
one that contains the roots of p.

This example highlights a problem that we will tackle. Given a countable
transitive model M of ZFC and some sentence ϕ in the language of set theory,
can we find the smallest extension of M that remains a model of set theory
and satisfies the sentence ϕ? The answer to this will be the process of forcing.
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Forcing Notions

We begin this process by defining forcing notions.

Forcing Notion

A forcing notion is simply a partially ordered set P ∈ M . Elements of P are
usually called conditions. And, if p, q ∈ P are two conditions and p ≤ q, then
we say q extends p. Moreover, two conditions are said to be compatible if they
have a common extension.

Dense Sets

Given a forcing notion P, we say a subset D ⊂ P is dense if for every condition
has an extension in D.

Ideals

An ideal of a forcing notion P is a subset G ⊂ P such that:

i. if q ∈ G and p ≤ q, then p ∈ G

ii. if p1, p2 ∈ G then there exists a common extension also lying in G .
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Generics

Now, we will define generics over a forcing notion P and give an example.

Generics

An ideal G of a forcing notion P is said to be generic (relative to our model
M) if G ∩D ̸= ∅ for every dense D ⊂ P (which lies in M ).

Example

We let P be the set of partial functions from ω to {0, 1}. We order P by
whether a function extends another, i.e. f ≤ g if and only if dom(f) ⊂ dom(g)
and f(n) = g(n) for all n ∈ dom(f).
The sets Dk = {f : k ∈ dom(f)} is a dense in P, so any generic over P will
represent a full function from ω to {0, 1}. Why? Well, G will have a function
fk that has k in its domain. Moreover, any two functions in G must be
compatible. So, we can piece together a single function from the compatible
ones found in G.
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The Generic Extension M [G]

Sadly, we do not get to witness the full construction of M [G] as it was
intended due to time constraints. The only real important thing I can tell you
is that M [G] will be the smallest model that extends M and contains our
generic G. This can be summarized in the following facts.

Fact 1

For every axiom ϕ of ZFC, M [G] ⊨ ϕ (i.e. M [G] is a model of ZFC).

The proof of the above fact is quite technical. It involves introducing the
Fundamental Theorem of Forcing which, essentially, states that the existence of
certain conditions p in the generic G from P will make M [G] satisfy certain
sentences.
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The proof of the above fact is quite technical. It involves introducing the
Fundamental Theorem of Forcing which, essentially, states that the existence of
certain conditions p in the generic G from P will make M [G] satisfy certain
sentences.
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The Generic Extension M [G] (cont.)

Fact 2

Our generic G is a set inside M [G].

Previously, we made use of the fact that G lived outside of M . But, in the
generic extensions, we actually add G to model.

Fact 3

We have M ⊂ M [G].

This can be done easily as for every x ∈ M , we can define a P-name that
evaluates to x. Let x̌ = {(y̌, p) : y ∈ x, p ∈ P}. When evaluated, x̌G = x.
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Forcing the Negation of the Continuum Hypothesis

At this point, it’s probably helpful to state what the Continuum Hypothesis is if
you are unfamiliar.

Continuum Hypothesis (CH)

If N ⊂ S ⊂ R, then |S| = |R| or |S| = |N|. In words, it says that there is no
subset of the real numbers that has cardinality strictly between the cardinality
of the reals or the cardinality of the naturals. In terms of cardinals, CH is
written as

2ℵ0 = ℵ1

So, our goal now reduces to the following: lets start with a countable transitive
model M , and expand it to a model of ZFC such that ¬CH fails. By the above
metatheorems, this will show that ZFC + ¬CH is consistent.
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Forcing ¬CH

We will now begin to describe the forcing notions P that will assist us in
showing ¬CH holds. The idea to make this happen is to introduce ℵ2 many
subsets of N. This way, it guarantees that 2ℵ0 > ℵ1.

Our Forcing Notion

We will let P be the set of partial functions from ℵ0 × ℵ2 onto {0, 1} ordered
by extension, i.e. f ≤ g if and only if dom(f) ⊂ dom(g) and g = f for all
values on dom(f).

Simple enough right? Now let’s see why a generic ideal of P introduces ℵ2

many subsets of N.
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Forcing ¬CH

Generic ideal for P
Any generic G of P will represent a full function from ℵ2 × ℵ0 to {0, 1}. This
means, that for every α < ℵ2, we get a full function fα : ℵ0 → {0, 1}. Hence,
we get ℵ2 many subsets of ℵ0.

Are we done, then? No. Let me introduce two problems. How do we know
that, when we expanded M to M [G], that we didn’t introduce a new set that
is a bijection from ℵ1 to ℵ2? This process is called cardinal collapse and is
useful for some forcing notions. However, that would be devastating. Also, how
do we know these subsets introduced are all distinct? What if they’re not, then
we can certainly have less than ℵ2 many subsets introduced which is also
devastating. We will remedy these two questions.
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P does not collapse cardinals

This fact is handled by a simple property of our forcing notion and an
application of a theorem. But first we need some definitions.

Antichains

Given a partially ordered set P, an antichain is a subset A ⊂ P such that no
two elements of A are compatible.

Countable Chain Condition

A partially ordered set P is said to have the countable chain condition (c.c.c.)
if every antichain of P is at most countable.

The name c.c.c. is horrendous given what property it describes, but it is a
name that has stuck.
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P does not collapse cardinals

Now we are able to state our theorem that will help use guarantee that we have
not introduced a new bijection between ℵ1 and ℵ2.

Theorem

If P is a forcing notion, and, our ground model M proves that P is c.c.c., then
every cardinal in M is a cardinal in M [G].

Proof

Let G be a generic over P, and let α ∈ M be an infinite ordinal that is not a
cardinal in M [G]. Then, there exists an infinite ordinal β ∈ M such that there
exists a surjection f : β → α in M [G]. Then there is a function g : β → P(α)
such that f(γ) ∈ g(γ) and g(γ) is countable in M . Then, α =

⋃
γ∈β g(γ).

Hence, |α| = |
⋃

γ∈β g(γ)| = |β| · ℵ0 = |β|. So α is not a cardinal in M .
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Our new subsets are distinct

Now, we know that M [G] has the exact same cardinals as M . So, we haven’t
introduced anything that would mess up the fact that we are really introducing
ℵ2 many subsets fα. However, we still need to check that these subsets fα are,
in fact, distinct.

Theorem

The subsets of ℵ0 introduced are all distinct.

Proof

Let f be the full function created by our generic G. For each ordinal α < ℵ2,
define the sets

f−1
α (1) = {n ∈ ℵ0 : f(n, α) = 1}

Then for any distinct ordinals α, β < ℵ2, the set
Dα,β = {g ∈ P : ∃n((n, α), (n, β) ∈ dom(g) and g(n, α) ̸= g(n, β))} is dense
in P. So, G must intersect each of these D’s. This guarantees that f−1

α are
distinct sets which were created by f .
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