◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Countably Generated Complete Boolean Algebras of Arbitrary Size

Chase Fleming

September 21st, 2021

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Table of contents

Background

- Ordinals
- Boolean Algebras
- Generators of Boolean Algebras
- Complete Boolean Algebras
- Regular Open Sets

2 Baire Space of Weight λ

- Products of Topological Spaces
- Definition of Baire Space
- \bullet Description of X
- Partition Properties

3 Main Result

- Generators
- Countable Generators
- Cardinality of ${\mathscr B}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Main Result

Theorem (Solovay, 1966)

For every ordinal λ , there exists a countably generated complete Boolean algebra of size larger than \aleph_{λ} .

Main Result

Theorem (Solovay, 1966)

For every ordinal λ , there exists a countably generated complete Boolean algebra of size larger than \aleph_{λ} .

Solovay's original proof is rather unintuitive. Moreover, his result can be tightened to show that those Boolean algebras are of size exactly $2^{\aleph_{\lambda}}$. The key ingredient is some elementary properties of the Baire Space of Weight λ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Orderings

Definition

A set W with binary relation < is *linearly ordered* if

```
i. p \not< p

ii. if p < q and q < r, then p < r

iii. and either p < q, q < p or p = q

for all p, q, r \in W.
```


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Orderings

Definition

A set W with binary relation < is *linearly ordered* if

```
i. p \not< p

ii. if p < q and q < r, then p < r

iii. and either p < q, q < p or p = q

for all p, q, r \in W.
```

Definition

A linearly ordered set (W, <) is well-ordered if every subset of W has a least element.

Orderings

Definition

A set W with binary relation < is *linearly ordered* if

```
i. p \not< p

ii. if p < q and q < r, then p < r

iii. and either p < q, q < p or p = q

for all p, q, r \in W.
```

Definition

A linearly ordered set (W, <) is well-ordered if every subset of W has a least element.

Example

The natural numbers, $\mathbb N,$ is a well-ordered set. Every subset of a well ordered set is well-ordered.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Informally, ordinals are a special type of well-ordered set such that the entire class of ordinals is well-ordered by \subset relation (however, it is usually still written as <). Moreover, every-well ordered set must be order isomorphic to some ordinal.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Ordinal Conventions

Ordinals are usually written as lowercase Greek letters, $\alpha,\beta,\gamma,$ etc. except in the finite case.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ordinal Conventions

Ordinals are usually written as lowercase Greek letters, $\alpha,\beta,\gamma,$ etc. except in the finite case.

Definition

The *finite ordinals* are represented by natural numbers n, and they correspond to the well-ordered set whose cardinality in equal to n. Actually, each n can be represented as the well-ordered set $\{m \in \mathbb{N} : m < n\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ordinal Conventions

Ordinals are usually written as lowercase Greek letters, $\alpha,\beta,\gamma,$ etc. except in the finite case.

Definition

The *finite ordinals* are represented by natural numbers n, and they correspond to the well-ordered set whose cardinality in equal to n. Actually, each n can be represented as the well-ordered set $\{m \in \mathbb{N} : m < n\}$.

Definition

For any given ordinal λ , the ordinal ω_{λ} corresponds to the first infinite ordinal that has cardinality \aleph_{λ} . Here, \aleph_{λ} is the first cardinality that is strictly larger than \aleph_{α} for all $\alpha < \lambda$.

Ordinal Conventions

Ordinals are usually written as lowercase Greek letters, $\alpha,\beta,\gamma,$ etc. except in the finite case.

Definition

The *finite ordinals* are represented by natural numbers n, and they correspond to the well-ordered set whose cardinality in equal to n. Actually, each n can be represented as the well-ordered set $\{m \in \mathbb{N} : m < n\}$.

Definition

For any given ordinal λ , the ordinal ω_{λ} corresponds to the first infinite ordinal that has cardinality \aleph_{λ} . Here, \aleph_{λ} is the first cardinality that is strictly larger than \aleph_{α} for all $\alpha < \lambda$.

Example

The ordinal $\omega_0 = \omega$ corresponds to natural numbers and has size $\aleph_0 = |\mathbb{N}|$. The ordinal ω_1 corresponds to the first uncountable well ordered set.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Boolean algebras

Definition

A Boolean algebra is a nonempty set \mathscr{B} with two distinguished elements 0 and 1, two binary operators \lor and \land , and unary operation c which satisfy the following axioms:

$$p \lor q = q \lor p \qquad p \land q = q \land p \qquad (1)$$

$$p \lor (q \lor r) = (p \lor q) \lor r \qquad p \land (q \land r) = (p \land q) \land r \qquad (2)$$

$$p \land (q \lor r) = (p \land q) \lor (p \land r) \qquad p \lor (q \land r) = (p \lor q) \land (p \land r) \qquad (3)$$

$$p \land (p \lor q) = p \qquad p \lor (p \land q) = p \qquad (4)$$

$$p \lor p^{c} = 1 \qquad p \land p^{c} = 0 \qquad (5)$$

for every $p, q, r \in \mathscr{B}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Boolean algebras

Definition

A Boolean algebra is a nonempty set \mathscr{B} with two distinguished elements 0 and 1, two binary operators \lor and \land , and unary operation c which satisfy the following axioms:

$$p \lor q = q \lor p \qquad p \land q = q \land p \tag{1}$$

$$p \lor (q \lor r) = (p \lor q) \lor r \qquad p \land (q \land r) = (p \land q) \land r \tag{2}$$

$$p \wedge (q \lor r) = (p \land q) \lor (p \land r) \qquad p \lor (q \land r) = (p \lor q) \land (p \land r) \qquad (3)$$

$$p \wedge (p \lor q) = p \qquad p \lor (p \land q) = p \qquad (4)$$

$$p \lor p^{c} = 1 \qquad p \land p^{c} = 0 \qquad (5)$$

for every $p, q, r \in \mathscr{B}$.

From the above axioms, we can conclude the following basic results:

$p \lor 1 = 1$	$p \wedge 1 = p$
$p \lor 0 = p$	$p \wedge 0 = 0$
$0^{c} = 1$	$1^{c} = 0$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Examples of Boolean algebras

Example

The trivial Boolean algebra only contains 0 and 1. Meet, join, and complement behave exactly like logical conjunction, disjunction, and negation, respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples of Boolean algebras

Example

The trivial Boolean algebra only contains 0 and 1. Meet, join, and complement behave exactly like logical conjunction, disjunction, and negation, respectively.

Example

Let X be any set. Then the powerset, $\mathscr{P}(X)$, is a Boolean algebra under the operations of union, intersection, and complementation. The 0 and 1 elements are identified to \emptyset and X respectively.

Examples of Boolean algebras

Example

The trivial Boolean algebra only contains 0 and 1. Meet, join, and complement behave exactly like logical conjunction, disjunction, and negation, respectively.

Example

Let X be any set. Then the powerset, $\mathscr{P}(X)$, is a Boolean algebra under the operations of union, intersection, and complementation. The 0 and 1 elements are identified to \emptyset and X respectively.

Generators of Boolean Algebras

Let \mathscr{B} be a Boolean algebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generators of Boolean Algebras

Let \mathscr{B} be a Boolean algebra.

Definition

A Boolean subalgebra \mathscr{P} of \mathscr{B} is a subset of \mathscr{B} that contains 0 and 1, and is closed under meet, join, and complementation.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generators of Boolean Algebras

Let \mathscr{B} be a Boolean algebra.

Definition

A Boolean subalgebra \mathscr{P} of \mathscr{B} is a subset of \mathscr{B} that contains 0 and 1, and is closed under meet, join, and complementation.

Definition

A subset $G \subset \mathscr{B}$ is a generator if the smallest Boolean subalgebra that contains G is \mathscr{B} itself.

Generators of Boolean Algebras

Let \mathscr{B} be a Boolean algebra.

Definition

A Boolean subalgebra \mathscr{P} of \mathscr{B} is a subset of \mathscr{B} that contains 0 and 1, and is closed under meet, join, and complementation.

Definition

A subset $G \subset \mathscr{B}$ is a generator if the smallest Boolean subalgebra that contains G is \mathscr{B} itself.

Definition

A Boolean algebra is *countably generated* if it contains a finite or denumerable generator.

Complete Boolean Algebras

Every Boolean algebra $\mathcal B$ is actually a partially ordered set under the following ordering:

 $p\leq q \quad \mbox{ if and only if } \quad p\vee q=q \quad \mbox{ if and only if } \quad p\wedge q=p$ for any $p,q\in \mathscr{B}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Complete Boolean Algebras

Every Boolean algebra $\mathcal B$ is actually a partially ordered set under the following ordering:

 $p \leq q$ if and only if $p \lor q = q$ if and only if $p \land q = p$

for any $p,q \in \mathscr{B}$.

Definition

Let S be a subset of a Boolean algebra $\mathscr{B}.$ Then we can define the arbitrary join and meet of S as

$$\bigvee \{s \in S\} = \bigvee S = \sup S$$

ii.

i.,

$$\bigwedge \{s \in S\} = \bigwedge S = \inf S$$

where \inf and \sup are taken over the partial ordering defined above.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Complete Boolean Algebras

Every Boolean algebra ${\mathscr B}$ is actually a partially ordered set under the following ordering:

 $p \leq q$ if and only if $p \lor q = q$ if and only if $p \land q = p$

for any $p,q \in \mathscr{B}$.

Definition

Let S be a subset of a Boolean algebra $\mathscr{B}.$ Then we can define the arbitrary join and meet of S as

$$\bigvee \{s \in S\} = \bigvee S = \sup S$$

ii.

i.,

$$\bigwedge \{s \in S\} = \bigwedge S = \inf S$$

where \inf and \sup are taken over the partial ordering defined above.

A word of caution: we are only defining $\bigvee S$ and $\bigwedge S$ when \sup and \inf actually exist.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Complete Boolean Algebras

We note that for any finite $S \subset \mathscr{B}$, $\bigvee S$ and $\bigwedge S$ align perfectly with the already defined meet and join of their elements.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Complete Boolean Algebras

We note that for any finite $S \subset \mathscr{B}$, $\bigvee S$ and $\bigwedge S$ align perfectly with the already defined meet and join of their elements.

Definition

A Boolean algebra \mathscr{B} is *complete* when, for any $S \subset \mathscr{B}$, $\bigvee S$ and $\bigwedge S$ exist.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Complete Boolean Algebras

We note that for any finite $S \subset \mathscr{B}$, $\bigvee S$ and $\bigwedge S$ align perfectly with the already defined meet and join of their elements.

Definition

A Boolean algebra \mathscr{B} is *complete* when, for any $S \subset \mathscr{B}$, $\bigvee S$ and $\bigwedge S$ exist.

The most accessible examples of complete Boolean algebras are finite Boolean algebras or $\mathscr{P}(X)$ for any set X. They are complete by way of definition of the intersection and union.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Topologies

Definition

Let X be a set. A subset $\tau\subset \mathscr{P}(X)$ is a topology on X if

- i. both \emptyset and X are in τ
- ii. finite intersections of elements in τ are in τ
- iii. arbitrary unions of elements in τ are in τ

We declare the elements of τ to be open sets. Moreoever, a set V is closed if and only if V^c is open. A set V is clopen if it is both open and closed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Topologies

Definition

Let X be a set. A subset $\tau \subset \mathscr{P}(X)$ is a topology on X if

- i. both \emptyset and X are in τ
- ii. finite intersections of elements in au are in au
- iii. arbitrary unions of elements in τ are in τ

We declare the elements of τ to be open sets. Moreoever, a set V is closed if and only if V^c is open. A set V is clopen if it is both open and closed.

We call the ordered pair (X, τ) a topological space. When τ is unambiguous, we simply refer to X as a space.

Topologies

Definition

Let X be a set. A subset $\tau \subset \mathscr{P}(X)$ is a topology on X if

- i. both \emptyset and X are in τ
- ii. finite intersections of elements in au are in au
- iii. arbitrary unions of elements in τ are in τ

We declare the elements of τ to be open sets. Moreoever, a set V is closed if and only if V^c is open. A set V is clopen if it is both open and closed.

We call the ordered pair (X,τ) a topological space. When τ is unambiguous, we simply refer to X as a space.

Example

Let X be any set. If $\tau = \mathscr{P}(X)$, then X is said to have the discrete topology. If $\tau = \{\emptyset, X\}$, then X is said to have the indiscrete topology.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Generators for Topologies

Sometimes it's convenient to describe a topology in terms of generators instead of looking at what the entire collection of open sets look like.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generators for Topologies

Sometimes it's convenient to describe a topology in terms of generators instead of looking at what the entire collection of open sets look like.

Definition

Given a topological space X, a base for X is a subcollection of open sets $\mathscr B$ such that

- i. every open set is equal to the union of elements from the base
- ii. if any two base elements B_1 and B_2 have non empty intersection, then there is a base element B_3 such that $B_3 \subset B_1 \cap B_2$.

We call elements of $\mathcal B$ basic open sets.

Generators for Topologies

Sometimes it's convenient to describe a topology in terms of generators instead of looking at what the entire collection of open sets look like.

Definition

Given a topological space X, a base for X is a subcollection of open sets $\mathscr B$ such that

- i. every open set is equal to the union of elements from the base
- ii. if any two base elements B_1 and B_2 have non empty intersection, then there is a base element B_3 such that $B_3 \subset B_1 \cap B_2$.

We call elements of \mathcal{B} basic open sets.

Example

The base for the usual topology on \mathbb{R} is given by the set $\mathscr{B} = \{(a, b) : a, b \in \mathbb{R}, a < b\}.$

・ロト・日本・日本・日本・日本・日本

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Interior and Closure

Let X be a topological space, and $A \subset X$.

Definition

The *interior* of A is the largest open set contained in A. It is given by

$$\operatorname{int}(A) = \bigcup \{ U \subset A : U \text{ is open} \}$$

The *closure* of A is the smallest closed set containing A. It is given by

 $cl(A) = \bigcap \{ V \supset A : V \text{ is closed} \}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Regular Open Sets

Definition

Let X be a topological space. A subset A of X is called *regular open* when $\mathrm{int}(\mathrm{cl}(A))=A.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Regular Open Sets

Definition

Let X be a topological space. A subset A of X is called *regular open* when int(cl(A)) = A.

A set that is open and closed is always regular open.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Regular Open Sets as Boolean Algebras

Theorem

Let X be a topological space, and let \mathscr{B} be the collection of all regular open sets of X. Then \mathscr{B} forms a complete Boolean algebra where \emptyset is the 0 element, X is the 1 element, and for any $\mathscr{U} \subset \mathscr{B}$,

$$\bigvee \mathscr{U} = \operatorname{int}\left(\operatorname{cl}\left(\bigcup \mathscr{U}\right)\right)$$

for any $\mathscr{U}\subset\mathscr{B}$ with $\mathscr{U}\neq \emptyset$

$$\bigwedge \mathscr{U} = \operatorname{int}\left(\bigcap \mathscr{U}\right)$$

and for any $U \in \mathscr{B}$,

 $U^c = \operatorname{int} \left(X \setminus U \right)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Products

Definition

Let A be a set, and, for every $\alpha\in A,$ let X_α be a set. Then we define the Cartesian product of X_α to be

$$\prod_{\alpha \in A} X_{\alpha} := \{ f : A \to \bigcup_{\alpha \in A} X_{\alpha} : f(\alpha) \in X_{\alpha} \}$$

When all X_{α} are equal, we simply write the product as X^{A} .

Products

Definition

Let A be a set, and, for every $\alpha\in A,$ let X_α be a set. Then we define the Cartesian product of X_α to be

$$\prod_{\alpha \in A} X_{\alpha} := \{ f : A \to \bigcup_{\alpha \in A} X_{\alpha} : f(\alpha) \in X_{\alpha} \}$$

When all X_{α} are equal, we simply write the product as X^{A} .

Example

Let X_1 and X_2 be \mathbb{R} . Then $\prod_{i \in \{0,1\}} X_i$ aligns with our previous notion of what \mathbb{R}^2 should be. Ordered pairs of the form (r_0, r_1) are precisely the set of functions from the two element set $\{0,1\}$ such that $f(0) = r_0 \in \mathbb{R}$ and $f(1) = r_1 \in \mathbb{R}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Tychonoff Topology

We begin to ask ourselves, can we construct a natural enough topology on $\prod_{\alpha \in A} X_{\alpha}$ where each X_{α} is a topological space?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tychonoff Topology

We begin to ask ourselves, can we construct a natural enough topology on $\prod_{\alpha \in A} X_{\alpha}$ where each X_{α} is a topological space?

Definition

Let A be a set, and, for each $\alpha \in A$, let X_{α} be a topological space. We define the *Tychonoff topology* on the set $\prod_{\alpha \in A} X_{\alpha}$ to be the topology whose base consists of the sets of the form

$$\prod_{\alpha \in A} U_{\alpha}$$

where

- i. U_{α} is open in X_{α} for every α
- ii. $U_{\alpha} = X_{\alpha}$ for all but finitely many α

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Baire Space of Weight λ

We start defining our space by fixing some ordinal λ

Definition

We define the *Baire Space of Weight* λ to be the product space

 $\omega_{\lambda}^{\omega}$

where ω_{λ} is equipped with the discrete topology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Baire Space of Weight λ

We start defining our space by fixing some ordinal λ

Definition

We define the Baire Space of Weight λ to be the product space

 $\omega_{\lambda}^{\omega}$

where ω_{λ} is equipped with the discrete topology.

For the rest of talk, let X be the Baire Space of Weight λ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Description of X

What does X even look like? From our previous definitions, any element $f \in X$ is a function $f : \omega \to \omega_{\lambda}$. It can be thought of as a sequence $(\lambda_1, \lambda_2, \lambda_3, \ldots)$ where $\lambda_i \in \omega_{\lambda}$ for all $i < \omega$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Partitions of X

Let $f \in X$ and $n < \omega$. Then define

$$U(n,f) = \{g \in X: \forall m \leq n, g(m) = f(m)\}$$

We note that each U(n, f) is actually a basic open set.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Partitions of X

Let $f \in X$ and $n < \omega$. Then define

$$U(n,f) = \{g \in X : \forall m \le n, g(m) = f(m)\}$$

We note that each U(n, f) is actually a basic open set.

Define the set $B_n = \{U(n, f) : f \in X\}$

Proposition

The set B_n partitions X into disjoint clopen sets.

Partitions of X

Let $f \in X$ and $n < \omega$. Then define

$$U(n,f)=\{g\in X: \forall m\leq n, g(m)=f(m)\}$$

We note that each U(n, f) is actually a basic open set.

Define the set $B_n = \{U(n, f) : f \in X\}$

Proposition

The set B_n partitions X into disjoint clopen sets.

Proof sketch

Each $g \in X$ will certainly lie in some element of B_n , namely U(n,g). If U(n,g) and U(n,f) have nonempty intersection, then f and g agree at all $i \leq n$, but then U(n,f) = U(n,g). To show U(n,f) is clopen, we show that it is open and its complement is as well.

Background	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Refinements of Partitions of X

Proposition

For n < m, we will have B_m refining B_n . Meaning, for all $U \in B_m$, there is some $V \in B_n$ such that $U \subset V$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Refinements of Partitions of X

Proposition

For n < m, we will have B_m refining B_n . Meaning, for all $U \in B_m$, there is some $V \in B_n$ such that $U \subset V$.

Proposition

The collection $\{B_n\}_{n<\omega}$ forms a countable set of partitions of X into clopen sets such that each successive partition refines the last.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Refinements of Partitions of X

Proposition

For n < m, we will have B_m refining B_n . Meaning, for all $U \in B_m$, there is some $V \in B_n$ such that $U \subset V$.

Proposition

The collection $\{B_n\}_{n<\omega}$ forms a countable set of partitions of X into clopen sets such that each successive partition refines the last.

Proposition

Every open set U of X can be written as a countable union of disjoint clopen sets.

A D N A 目 N A E N A E N A B N A C N

Proof of Last Proposition

Proof

Define the function $\phi_U: U \to \omega$ as $\phi_U(f) = \inf(n < \omega : U(n, f) \subset U)$. This function is well defined defined by the previous proposition. Next, let $U_n = \bigcup \{U(n, f) : \phi_U(f) = n\}$. All U_n are pairwise disjoint. For any $f \in U$, if $f \in U_n$ and $f \in U_m$, then $n = \phi_U(f) = m$, which cannot happen unless n = m. It's also clear that each U_n is clopen as U_n is a union of basic open sets, and $X \setminus U_n$ is simply the union of the open elements of B_n that are not in U_n .

Finally, we see that

 $U = \bigcup_{n < \omega} U_n$

For all $f \in U$, the set $\{n < \omega : U(n, f) \subset U\}$ is nonempty by the fact that U(n, f) is a basic open set. Thus, $f \in U_n$ for some $n < \omega$, and $U \subset \bigcup_{n < \omega} U_n$. The reverse inclusion is clear as $U_n \subset U$ for all n.

Main Result

Theorem

For every ordinal $\lambda,$ there exists a countably generated complete Boolean algebra of size equal to $2^{\aleph_\lambda}.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Main Result

Theorem

For every ordinal λ , there exists a countably generated complete Boolean algebra of size equal to $2^{\aleph_{\lambda}}$.

Let ${\mathscr B}$ be the Boolean algebra of regular open sets of the Baire Space of Weight $\lambda.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main Result

Theorem

For every ordinal λ , there exists a countably generated complete Boolean algebra of size equal to $2^{\aleph_{\lambda}}$.

Let ${\mathscr B}$ be the Boolean algebra of regular open sets of the Baire Space of Weight $\lambda.$

We already know that the Boolean algebra of regular open sets is complete. We only need to show that it is countable generated and has size $2^{\aleph_{\lambda}}$.

Generators for ${\mathscr B}$

For every ordinal $\eta < \omega_{\lambda}$, define the set

$$A_{n,\eta} = \{ f \in X : f(n) = \eta \}$$

Generators for ${\mathscr B}$

For every ordinal $\eta < \omega_{\lambda}$, define the set

$$A_{n,\eta} = \{f \in X : f(n) = \eta\}$$

Proposition

The collection $\{A_{n,\eta} : n < \omega, \eta < \omega_{\lambda}\}$ generates \mathscr{B} .

Generators for \mathscr{B}

For every ordinal $\eta < \omega_{\lambda}$, define the set

$$A_{n,\eta} = \{f \in X : f(n) = \eta\}$$

Proposition

The collection $\{A_{n,\eta} : n < \omega, \eta < \omega_{\lambda}\}$ generates \mathscr{B} .

Proof sketch

Given any regular open set U, it is also open. By the previous propositions $U = \bigcup_{i < \omega} U_i$ where U_i is clopen and pairwise disjoint. Then each

$$U(n,f) = \bigwedge_{i \le n} A_{i,f(i)}$$

and

$$U_n = \bigvee \{ U(n, f) : \phi_U(f) = n \}$$

and

$$U = \bigvee_{n < \omega} U_r$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Countable Generators of ${\mathscr B}$

For every $n, m < \omega$, define the set $B_{n,m} = \{f \in X : f(n) \le f(m)\}.$

Proposition

For every $n, m < \omega$, $B_{n,m} \in \mathscr{B}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Countable Generators of ${\mathscr B}$

For every $n, m < \omega$, define the set $B_{n,m} = \{f \in X : f(n) \le f(m)\}$.

Proposition

For every $n, m < \omega$, $B_{n,m} \in \mathscr{B}$.

Proof sketch

It suffices to show $B_{n,m}$ is clopen. Write $B_{n,m}$ and $X \setminus B_{n,m} = \{f \in X : f(n) > f(m)\}$ as unions of basic clopen sets. The idea is that $B_{n,m}$ is the union of sets whose *n*th element is an ordinal less than the *m*th element. We union over all possibilities.

Countable Generators of ${\mathscr B}$

Proposition

The Boolean algebra \mathscr{B} is generated by all $B_{n,m}$.

Countable Generators of ${\mathscr B}$

Proposition

The Boolean algebra \mathscr{B} is generated by all $B_{n,m}$.

Proof setup

The proof is completed by transfinite induction. We first let \mathscr{B}' to be the smallest complete Boolean algebra that contains $B_{n,m}$ for all $n, m < \omega$. Then, in order to show $\mathscr{B}' = \mathscr{B}$, we simply show that $A_{n,\eta} \in \mathscr{B}'$ for every $n < \omega, \eta < \omega_{\lambda}$. Then we will be done as $B_{n,m}$ must then generate \mathscr{B} . We define the sets

$$C_{n,\eta} = \{ f \in X : f(n) \le \eta \}$$

and

$$Z_{n,\eta} = \{f \in X : f(n) < \eta\}$$

A crucial observation is that

$$A_{n,\eta} = C_{n,\eta} \wedge Z_{n,\eta}^c$$

So, if we show $C_{n,\eta}$ and $Z_{n,\eta}$ in \mathscr{B}' , we will be done.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Partial Proof of Last Proposition

Proof

We will only show part of the induction step. For any $n < \omega$, we assume we have shown $C_{n,\xi}, Z_{n,\xi} \in \mathscr{B}'$ for all $\xi < \eta$. The first claim is that

$$Z_{n,\eta} = \bigvee_{\xi < \eta} A_{n,\xi}$$

Briefly, if $f \in Z_{n,\eta}$ then $f(n) < \eta$, so it's in some $A_{n,\xi}$. If f is in the right hand side, then clearly $f(n) = \xi < \eta$. So it's in the left. The part step is to show that

The next step is to show that

$$C_{n,\eta} = \bigwedge_{m < \omega} \left(Z_{m,\eta} \bigcup B_{n,m} \right)$$

If f is in the right hand side, then $f(n) \leq \eta$. So, for each $m < \omega$ either $f(m) < \eta$ or $f(m) \geq \eta \geq f(n)$. In either case, f will be in $Z_{m,\eta}$ or $B_{n,m}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof (cont.)

We show the reverse inclusion by contrapositive. Assume $f \notin C_{n,\eta}$. Then, consider the set U(N, f) for some fixed N > n. Define the function

$$h_N(m) = \begin{cases} f(m) & m \le N \\ \eta & m > N \end{cases}$$

The function h_N will lie in U(N, f), but h_N is not contained in $Z_{N,\eta} \bigcup B_{n,N}$ for any $m < \omega$. Therefore f is not an interior point of

$$\bigcap_{m<\omega} \left(Z_{m,\eta} \bigcup B_{n,m} \right)$$

and it will not lie in the meet.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Cardinality of the Set of Open Sets of X

Proposition

The size of the set of all open sets of X is $2^{\aleph_{\lambda}}$.

Cardinality of the Set of Open Sets of X

Proposition

The size of the set of all open sets of X is $2^{\aleph_{\lambda}}$.

Proof

Every open set U is the countable union of disjoint clopen sets. Each one of those clopen sets is taken from a union of elements in the partition B_n . The the total number of combinations to choose from each B_n is precisely

$$(2^{\aleph_{\lambda}})^n = 2^{\aleph_{\lambda}}$$

Therefore, each open set may be written in at most

$$(2^{\aleph_{\lambda}})^{\aleph_{0}} = 2^{\aleph_{\lambda} \cdot \aleph_{0}} = 2^{\aleph_{\lambda}}$$

ways. Hence, the number of open sets is bounded above by $2^{\aleph_{\lambda}}$. We also notice that for each subset $Y \subset \omega_{\lambda}$, the set $U_Y = \prod_{n < \omega} U_n$ where $U_0 = Y$ and $U_i = \omega_{\lambda}$ otherwise. Then U_Y is open. Thus, there are at least $2^{\aleph_{\lambda}}$ open sets.

Cardinality of ${\mathscr B}$

Corollary

 $|\mathscr{B}| = 2^{\aleph_{\lambda}}$

Proof

It follows from the fact that every regular open set is also open, and the all the sets U_Y constructed in the previous proposition are clopen.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Robert M. Solovay. "New proof of a theorem of Gaifman and Hales." Bulletin of the American Mathematical Society, 72(2) 282-284 March 1966.
- In Thomas Jech, Set Theory, Springer, 2003.
- Stephen Willard, General Topology, Dover Publications, 2004.
- 9 Paul Halmos, Lectures on Boolean Algebras, Dover Publications, 2018.