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We will go over the construction of the Kunen line, functional countability of spaces, and
start a proof to an answer posed in [1].

1 The Kunen Line

The Kunen Line first appeared in [2] by Juhász, Kunen, and Rudin. Their construction
uses only CH to construct a hereditarily separable, non-Lindelöf, regular, first countable,
locally compact, locally countable space of cardinality ω1. The method refines the Euclidean
topology on R.

1.1 Definitions

We state some definitions pertaining to the properties of the Kunen Line.

Definition (Local Cardinality). The local cardinality of a space X is a cardinal κ such that
for every point x ∈ X, there exists an open neighborhood U of x such that |U | ≤ κ.

A space is said to be Locally Countably if the local cardinality of X is ω.

Definition (Hereditarily Separable (HS)). A space X is said to be hereditarily separable if
every subspace S ⊂ X has a countable dense subset.

Definition (Continuum Hypothesis (CH)). The Continuum Hypothesis states that c = ω1.

1.2 Construction

Let ρ denote the usual topology on R and let τ denote the finer topology that will be
constructed. Assume the CH and enumerate R = {xα : α < ω1}. Then consider all initial
segments Xα = {xβ : β < α}. We let τα and ρα be the topologies on the subspace Xα. Also,
enumerate the set [R]ω = {Sα : α < ω1}.

We inductively build topologies τη for η ≤ ω1 such that for all ξ < η ≤ ω1 we have the
following:

1. τξ = τη ∩ P(Xξ, i.e. Xξ is open in τη

2. Each τη is first countable, locally compact, and T2.
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3. ρη ⊂ τη

4. For each µ < ξ, if xξ ∈ Clρ(Sµ) then xξ ∈ Clτη(Sµ)

For each β ≤ ω, let τβ = P(Xβ). Properties 1 − 4 are rather trivial to check given that
this is the discrete topology applied to countable sets.

Now, we assume we have constructed τη for all η < β such that the above hold for all
ξ < η.

If β is a limit ordinal, we let τβ = {U ⊂ Xβ : ∀η < β, (U ∩Xη ∈ τη}. We check that the
above four properties hold for all

2 Functional Countability

A space X is functionally countable if |f→(X)| ≤ ω for any real-valued continuous function
f : X → R. An important proposition found in the paper is the following

Proposition 2.1 (3.2). If X is a space and (X × X) \∆X is functionally countable, then
both spaces X and X ×X are functionally countable.

It is also apparent that scattered spaces are are of massive importance to the property of
functional countability. We give the definition of scattered and prove a few small

Definition (Scattered). A space X is scattered if it does not contain a non-empty dense in
itself subset.

An immediate equivalent of is X is scattered if every non-empty subset S ⊂ X has an
isolated point. So, X is scattered if for all non-empty S ⊂ X, there exists x ∈ S such that
{x} is open in S.

Proposition. A scattered space is automatically hereditarily scattered, i.e. every subspace
of a scattered space is scattered.

Proof. Let X be a scattered space and let S ⊂ X be a non-empty subspace. Consider
any subset H ⊂ S. As H ⊂ X, we have there exists x ∈ H and U open in X such that
H ∩ U = {x}. Now, clearly S ∩ U is a non-empty open set in S. Then, it is immediate that
H ∩ (S ∩ U) = (H ∩ U) ∩ S = {x} ∩ S = {x}. Therefore, S is scattered.

Proposition. If X is second countable and scattered, then |X| ≤ ω.

Proof. Let X is a second countable scattered space. Assume X is uncountable. We will
construct a subset S ⊂ X such that any point of S will have a neighborhood base that
includes another point of S.

Let B be the countable base ofX. Consider the subfamily B′ = {B ∈ B : B is countable}.
Allow S = (

⋃
B′)c. We note that S is nonempty. This is because

⋃
B′ is at most countable

as it is a countable union of countable sets. As X is uncountable, this means |S| > ω.
Pick any point x ∈ S. Find any basic open set U containing x. We need to notice that

U /∈ B′. This is because x ∈ S = (
⋃

B′)c, then U cannot be a proper subset of
⋃

B′ Hence,
U cannot be a member of the family B′. So, we conclude that |U | > ω.



As
⋃

B′ is countable, it must be the case that U ∩ S must be uncountable. More
importantly, this means there exists x′ ∈ U with x′ ∈ S. Therefore, any basic open set U
will never have the property that U ∩ S = {x}. This means that X must be countable.

I’m not quite sure how helpful these propositions are to understanding functional count-
ability, but they nonetheless seem important to understanding scattered spaces.

Now, we turn our attention to functional countability of ordinals. We adopt the proof of
theorem 3.13 to show that ω2

1 \∆ is not functionally countable.

Theorem 2.2 (3.13). Let X be a linearly ordered compact space whose complement of the
diagonal is functionally countable, then X is countable and metrizable.

Proposition. The space ω2
1 \∆ is not functionally countable.

Proof. Let α be any countable successor ordinal. Then, there exists β such that α = β + 1.
Let α− = β and α+ = α + 1. We call these the neighbors of α.

It is immediate that there exists an uncountable set D of successor ordinals such that at
least one neighbor is a successor oridnal. In fact, just take D to be all successor ordinals.
Then for all β, β + 1 is a neighbor and itself a successor ordinal.

The above property means that we may find ω1 many successor ordinals {ατ : τ < ω1}
such that {ατ , (ατ )+} ∩ {αξ, (αξ)+} = ∅ whenever τ ̸= ξ.

Then, we take the set Q = {(ατ , (ατ )+) : τ < ω1} ⊂ ω2
1 \ ∆}. It is immediate that Q

is open and discrete as each of these coordinate of any element of Q is a successor - hence
isolated in the order topology.

We now show that Cl(Q) \ Q ⊂ ∆. Take any (α, β) ∈ ω2
1 \∆. Then there exist disjoint

open intervals U and V such that α ∈ U and β ∈ V . Moreover, W = U × V is an open
neighborhood of (α, β).

We can have two cases:

1. Case 1: α < β. Then ∀τ ∈ U,∀ξ ∈ V, τ < ξ. If (α1, β1), (α2, β2) ∈ U × V , then if
(α1)+ ∈ V , then α2 < (α1)+. So we can conclude that α2 ≤ α1. A similar argument
yields that α1 ≤ α2. Hence, α1 = α2. We may repeat the argument for β1 and β2. So
we conclude that (α1, β1) = (α2, β2). Hence (U × V ) ∩ Q can only have at most one
element.

2. Case 2: β < α. Then we have ∀τ ∈ U,∀ξ ∈ V , we have τ > ξ. So, if (U×V )∩Q is non
empty, then if we have any (γτ , (γτ )+) ∈ U × V , then γτ > (γτ )+, which is impossible.
So we conclude that (U × V ) ∩Q = ∅

Therefore, we have proved that every (α, β) ∈ ω2
1 \∆ has an open neighborhood W such

that |W ∩Q| ≤ 1. Therefore Cl(Q) \Q ⊂ ∆. Thus Q is closed in ω2
1 \∆.

So Q is an uncountable clopen discrete subspace of ω2
1 \ ∆, and by proposition 3.1(c),

ω2
1 \∆ is not functionally countable.



3 Functional Countability for the space (X + 1)2 \∆
We now examine the possibility of the space (X + 1)2 \ ∆ of being functionally countable
where X is the Kunen line, and X + 1 is the one-point compactification of X. The most
important properties of the Kunen line that will be used is local countability - that every
element x ∈ X has a countable neighborhood, and hereditary separability - X and every
subspace contains a countable dense subset. So, let τ be the topology of the Kunen line.

Allow ∞ to be the point added in the one-point compactification of X. We will consider
any point (x, y) ∈ (X + 1)2 \∆ where x ̸= y and neither x or y are the point ∞. By local
countability, there exists countable open neighborhoods Ux and Uy. Moreover, each of these
Ux and Uy must meet the countable dense subset of X. These give rise to a countable open
neighborhood in (X + 1)2 \∆.

Now, we take any non constant sequence ((x, y)n)n<ω such that (x, y)n → (x, y) in the
standard Euclidean topology. We hope to conclude that (x, y)n rarely converges to (x, y).

By the previous remarks, it is quite easy to see that (x, y)n will converge in the Kunen
line topology to (x, y) only if the tail of the two coordinates of the sequence are subsets of
Ux and Uy. Hence, uncountably many sequences will not ever be convergent to (x, y) in τ .
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