Diamond Equivalents

Chase Fleming

We state the three forms of diamond that we will show are equivalent.

- 1. \diamond : there is a family $\{f_{\alpha}\}_{\alpha < \omega_1}$ of functions such that f_{α} maps α into α , and, if f maps ω_1 into ω_1 , then $\{\alpha : f|_{\alpha} = f_{\alpha}\}$ is stationary.
- 2. \diamond_1 : there is a family $\{S_{\alpha}\}_{\alpha < \omega_1}$ of subsets of ω_1 such that $S_{\alpha} \subset \alpha$ and, if $S \subset \omega_1$, then $\{\alpha : S \cap \alpha = S_{\alpha}\}$ is stationary.
- 3. \diamond_2 : there is a family $\{M_{\alpha}\}_{\alpha < \omega_1}$ of subsets of $\omega_1 \times \omega_1$ such that $M_{\alpha} \subset \alpha \times \alpha$ and, if $M \subset \omega_1 \times \omega_1$, then $\{\alpha : M \cap (\alpha \times \alpha) = M_{\alpha}\}$ is stationary.
- 4. \Diamond_{2b} : there is a family of functions $\{f_{\alpha}\}_{\alpha < \omega_1}$ where $f_{\alpha} : \alpha \times \alpha \to \alpha$ and if given any $f : \omega_1 \times \omega_1 \to \omega$ the set $\{\alpha : f|_{(\alpha \times \alpha)} = f_{\alpha}\}$ is stationary.

We will now show that the above formulations are all equivalent.

Proof. We now prove the following implications.

- i. $\diamondsuit \implies \diamondsuit_1$: Define $S_\alpha = f_\alpha(\alpha)$. We show that S_α satisfy \diamondsuit_1 . Now, let $S \subset \omega_1$. Then, S can be thought of as the image of some function $f : \omega_1 \to \omega_1$. Then, by the assumption, the collection of α such that f agrees with f_α is stationary. That means that $S \cap \alpha = S_\alpha$ for a stationary set of α as desired as f and f_α agree on α which means their images restricted to α will be equal.
- ii. $\Diamond_1 \implies \Diamond_2$: let f be the bijection from ω_1 to $\omega_1 \times \omega_1$ such that $f^{\rightarrow}(\alpha) = \alpha \times \alpha$ for all limit α . Given a \Diamond sequence $\{S_{\alpha}\}_{\alpha < \omega_1}$, let $M_{\alpha} = f^{\rightarrow}(S_{\alpha})$ for limit α and $M_{\alpha} = \emptyset$ otherwise. By the above property, we will have that $M_{\alpha} \subset \alpha \times \alpha$.

Let M be any subset of $\omega_1 \times \omega_1$. Then let $S = f^{-1}(M) \subset \omega_1$. By assumption, $\{\alpha : S \cap \alpha = S_{\alpha}\}$ is stationary. Then $\{\alpha \in \Lambda_{\omega_1} : S \cap \alpha = S_{\alpha}\}$ is also stationary as Λ_{ω_1} is a club. Then $\{\alpha \in \Lambda_{\omega_1} : f^{\rightarrow}(S) \cap f^{\rightarrow}(\alpha) = f^{\rightarrow}(S_{\alpha})\} = \{\alpha \in \Lambda_{\omega_1} : M \cap (\alpha \times \alpha) = M_{\alpha}\}$ is stationary. Hence $\{\alpha : M \cap (\alpha \times \alpha) = M_{\alpha}\}$ is stationary as it contains a stationary set.

iii. $\diamond_2 \implies \diamond$: Let $A = \{\alpha < \omega_1 : M_\alpha \text{ is a function}\}$. Then, let $f_\alpha = M_\alpha$ for all $\alpha \in A$ and let $f_\alpha = 0$ for all $\alpha \notin A$. Now, let $f : \omega_1 \to \omega_1$ be any function. Then $f = M \subset \omega_1 \times \omega_1$. By assumption $\{\alpha : M \cap (\alpha \times \alpha) = M_\alpha\}$ is a stationary set. We notice that $M \cap (\alpha \times \alpha)$ is simply the restriction of M = f to domain α and codomain α . Then $f|_\alpha = f_\alpha$ on a stationary set.

iv. $\Diamond_{2b} \implies \Diamond$ define the family of functions $\{g_{\alpha}\}_{\alpha < \omega_1}$ by $g_{\alpha} = f_{\alpha} \circ i_{\alpha}$ where $i_{\alpha} : \alpha \to \alpha \times \alpha$ by $i_{\alpha}(\beta) = (\beta, \beta)$. Let $f : \omega_1 \to \omega_1$ be any function. Then, we can extend f to a function $\overline{f} : \omega_1 \times \omega_1 \to \omega_1$ by $\overline{f}((\alpha, \alpha)) = f(\alpha)$ for all $(\alpha, \alpha) \in \Delta_{\omega_1 \times \omega_1}$ and $\overline{f}((\beta, \gamma)) = 0$ for all $(\beta, \gamma) \notin \Delta_{\omega_1 \times \omega_1}$.

By assumption, the set $\{\alpha : \overline{f}|_{(\alpha \times \alpha)} = f_{\alpha}\}$ is stationary. So, this means $\{\alpha : f|_{\alpha} = g_{\alpha}\}$ is as well.

v. $\diamondsuit \implies \diamondsuit_{2b}$ Let ϕ be the bijection from ω_1 to $\omega_1 \times \omega_1$ that maps α onto $\alpha \times \alpha$ for all limit ordinals. Then, set $\phi_{\alpha}^{-1} = \phi^{-1}|_{\alpha \times \alpha} : \alpha \to \alpha \times \alpha$. Let $\{f_{\alpha}\}_{\alpha < \omega_1}$ be the sequence guaranteed in the assumption. Then construct the functions $\{g_{\alpha}\}_{\alpha < \omega_1}$ by $g_{\alpha} = f_{\alpha} \circ \phi_{\alpha}^{-1} : \alpha \times \alpha \to \alpha$ for limit α and $g_{\alpha} = 0$ for any other.

Let $f : \omega_1 \times \omega_1 \to \omega_1$ be any function. Then $f \circ \phi : \omega_1 \to \omega_1$. By assumption, $\{\alpha : f \circ \phi|_{\alpha} = f_{\alpha}\}$ is stationary. Restrict the above set to Λ_{ω_1} . Then $\{\alpha \in \Lambda_{\omega_1} : f|_{(\alpha \times \alpha)} = f_{\alpha} \circ \phi^{-1}|_{\alpha}\}$ will also be stationary.