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We begin this section with a review of product spaces. We will define the Baire Space of
Weight λ, and use that space in order to construct a complete Boolean Alegbra of arbitrarily
large size that is also countably generated.

Definition 1 (Cartesian Product). Let A be any set, and for every α ∈ A, let Xα be a
nonempty set. We define the Cartesian Product as the following set∏

α∈A

Xα =
{
f : A →

⋃
α∈A

Xα

∣∣∣(∀α ∈ A)f(α) ∈ Xα

}
In words, the Cartesian product is the collection of all functions from our indexing set

such that the image at each index α lies in Xα. If all Xα are all the same set, we may instead
write the product simply as XA. For every product,

∏
α∈AXα, there exists a mapping onto

each factor called the projection. This map is denoted πα and is defined by f 7→ f(α).
In the case when all the sets Xα that we are considering are also topological spaces, we

may hope equip the product of those spaces with a natural enough topology. We would, in
particular, like a the smallest topology on

∏
α∈AXα such that each projection map, πα, is

continuous.

Definition 2 (Tychonoff Topology). Let {Xα}α∈A be a collection of topological spaces.
Then consider the product

∏
α∈A Xα.We define the Tychonoff Topology on the product as

as the topology which has as its subbase the collection

BS = {π−1
α (U) : α ∈ A and U is open in Xα}

The Tychonoff Topology (or from here on out, the product topology) then has as a base
all finite intersections of subbasic elements. But what do these sets really look like? Well,
to understand, we first look at subbasic elements. For any β ∈ A and U open in Xβ, the set
π−1
β (U) will be just the collection of functions from the product space such that f(β) ∈ U .

Hence, it will just be the product
∏

α∈A Sα where Sβ = U and Sα = Xα for all α ̸= β. Then
taking finite intersections of subbasic sets gives us that sets of the form

∏
α∈A Uα where Uα

is open in Xα and Uα = Xα for all but finitely many α form a base for the product topology.
Now, we define the main space of interest which will be used to construct our desired

Boolean Algebra.

Definition 3 (Baire Space of Weight-λ). For any ordinal λ, we define the Baire Space
of Weight-λ to be the product space

∏
n<ω ωλ = (ωλ)

ω = ωω
λ where each ωλ is equipped with

the discrete topology.
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Throughout the rest of this section, let X be the Baire Space of Weight-λ. From our
definitions, we see that X is really a set of functions f with domain ω and codomain ωλ.
And since ωλ has the discrete topology, any subset of ωλ is open. Then we see that the
subbasic sets of ωλ

λ take the general form
∏

n<ω Un where Un = ωλ for all but one m and Um

is a nonempty subset of ωλ.
These Baire Spaces are of interest in their own right, and many of the properties they

possess are helpful in proving the existence of our arbitrarily large and countably generated
complete Boolean Algebra. So we begin with an examination of X. But first we give the
definition for a refinement of a cover.

Definition 4 (Refinement of a Cover). Let Y be a topological space with two open
covers U = {Uα}α∈A and V = {Vβ}β∈B. We say that V is a refinement of the cover U (in
symbols, V ≺ U ) if for all Vβ ∈ V there is some Uα ∈ U such that Vβ ⊂ Uα.

Baire Spaces have an important property of refinements: it contains a countable sequence
of disjoint clopen covers such that each successive cover is a refinement of the previous. In
this context, a cover U of X is clopen and disjoint if all U ∈ U is clopen and any two
different elements of the cover are disjoint, respectively. In pursuit of showing this, we define
the sets U(n, f) = {g ∈ X : ∀m ≤ n, f(m) = g(m)} and Bn = {U(n, f) : f ∈ X}.

Proposition 1. The set {Bn}n<ω is a countable set of disjoint clopen covers of X such that
for whenever m < n < ω, Bn ≺ Bm.

Proof. We first show that for each n < ω, Bn is a clopen cover. So, we see that each U(n, f)
is open as U(n, f) =

∏
i<ω Ui where Ui = {f(i)} for i ≤ n and Ui = ωλ for i > n. We also

see that U(n, f)c =
∏

i<ω Ui where Ui = ωλ \ {f(i)} for i ≤ n and Ui = ωλ for i > n is open.
And clearly Bn is a cover as for every f ∈ X, f ∈ U(n, f). And, consider two functions
such that U(n, f) ̸= U(n, g). Then clearly f(m) ̸= g(m) for some m < n. But this certainly
means that there can never be a function h such that h(m) = f(m) and h(m) = g(m) for
all m < n. Therefore U(n, f)

⋂
U(n, g) = ∅.

To see the rest, we only show Bn+1 ≺ Bn and then use the transitivity of refinements to
complete the proof. So, pick any U(n+1, f) ∈ Bn+1. Then certainly U(n+1, f) ⊂ U(n, f) ∈
Bn. As if any g ∈ U(n + 1, f), then g(m) = f(m) for all m ≤ n + 1, then g(m) = f(m) for
all m ≤ n. So we conclude that that Bn+1 refineds Bn.

Another important fact about these Baire Spaces is that they are indeed first-countable.
Even more than that, the countable neighborhood base for every f ∈ X is clopen.

Proposition 2. The set {U(n, f) : n < ω} forms a clopen neighborhood base for every
f ∈ X.

Proof. Allow U to be a basic open set of X containing f . Then U =
∏

i<ω Ui where Ui is
open in ωλ for all i, and Ui = ωλ for all but finitely many i. Allow N to be the smallest index
such that Un = ωλ for all n > N . Then we see that U(N, f) ⊂ U . For let g ∈ U(N, f). We
have to show that g(m) ∈ Um for every m < ω. If m ≤ N , then g(m) = f(m). Since f ∈ U ,
we see that g(m) ∈ Um. Now if m > N , then g(m) ∈ Um as Um = ωλ. Hence g ∈ U .
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Finally, the possibly most important property of Baire Spaces that we will need is the
fact that the above sequence of disjoint clopen covers {Bn}n<ω allows us to write every open
set as a disjoint union of clopen sets. This a powerful fact that will enable us to handle the
Boolean Algebra of the regular open sets of X in an easier manner.

Proposition 3. Every open set U ⊂ X can be written as a countable union of disjoint clopen
sets.

Proof. Define the function ϕU : U → ω as ϕU(f) = inf(n < ω : U(n, f) ⊂ U). This function
is well defined defined by the previous proposition. Next, let Un =

⋃
{U(n, f) : ϕU(f) = n}.

All Un are pairwise disjoint. For any f ∈ U , if f ∈ Un and f ∈ Um, then n = ϕU(f) = m,
which cannot happen unless n = m. It’s also clear that each Un is clopen as Un is a union
of basic open sets, and X \ Un is simply the union of the open elements of Bn that are not
in Un.

Finally, we see that

U =
⋃
n<ω

Un

For all f ∈ U , the set {n < ω : U(n, f) ⊂ U} is nonempty by proposition 1. Thus, f ∈ Un

for some n < ω, and U ⊂
⋃

n<ω Un. The reverse inclusion is clear as Un ⊂ U for all n.

We are now ready to attack the main result of this section:

Theorem. For every ordinal λ, there exists a countably generated Boolean Algebra of size
2ωλ.

Allow B to be the Boolean Algebra of regular open sets of X. We give a reminder that
a subset A of X to be regular open if and only if A = (Ā)◦, i.e. A is equal to the interior
of its closure, and that the collection regular open sets, B, of any topological space form a
complete Boolean Algebra under the following Boolean Algebra operations: for any U ⊂ B,∨

U =

(⋃
U

)◦

for any U ⊂ B with U ̸= ∅ ∧
U =

(⋂
U
)◦

and for any U ∈ B,
U c = (X \ U)◦

With the above relations in mind, we turn to show that B has a generally easy to write
down set of generators. We define the set An,η = {f ∈ X : f(n) = η} for every n < ω and
η < ωλ.

Proposition 4. The collection {An,η : n < ω, η < ωλ} generates B.

Proof. Let U ∈ B be a regular open set. Then U is also open. By proposition 3, we
may write U as a countable union of disjoint clopen sets Un. Let ϕU(f) be defined as in
proposition 3. Then the proof follows from the following 3 facts.
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i. For any f ∈ X,

U(n, f) =
∧
i≤n

Ai,f(i)

ii. For every n < ω,

Un =
∨

{U(n, f) : ϕU(f) = n}

iii.
U =

∨
n<ω

Un

From these three, we can conclude that any regular open set U may be written as meets and
joins of the sets An,η.

To prove i, we see that U(n, f) =
⋂

i≤nAi,f(i). And since U(n, f) is clopen, it is regular
open. Hence

U(n, f) = (U(n, f))◦ =

(⋂
i≤n

Ai,f(i)

)◦

=
∧
i≤n

Ai,f(i)

To prove ii, we see that Un =
⋃
{U(n, f) : ϕU(f) = n}. Again, Un is clopen, so

Un =
(
Un

)◦
=

(⋃
{U(n, f) : ϕU(f) = n}

)◦

=
∨

{U(n, f) : ϕU(f) = n}

To prove iii, we see that U =
⋃

n<ω Un by proposition 3. As U is regular open, we get

U =
(
U
)◦

=

(⋃
i<ω

Un

)◦

=
∨
i<ω

Un

Now we introduce a proposed countable set of generators for B. For every n,m < ω, we
define the set Bn,m = {f ∈ X : f(n) ≤ f(m)}. We must first show that these sets are in B
to begin with.

Proposition 5. For every n,m < ω, Bn,m ∈ B.

Proof. It suffices to show that Bn,m is clopen. For α, β < ωλ, define the set Sβ,α =
∏

i<ω Si

where Sn = {β}, Sm = {α}, and Si = ωλ otherwise. We note that Sβ,α is open in the product
topology. Then we see that

Bn,m =
⋃

α<ωλ

⋃
β≤α

Sβ,α

Therefore Bn,m is open as it is the union of open sets.
Then, consider the complement Bc

n,m = {f ∈ X : f(n) > f(m)}. Let Tβ,α =
∏

i<ω Ti

where Tn = {β}, Tm = {α}, and Ti = ωλ otherwise. Then Tβ,α is open in the product
topology. Then we see that

Bc
n,m =

⋃
α<ωλ

⋃
α<β<ωλ

Tβ,α

Hence Bc
n,m is open.
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We finally show that B is generated by our countable set.

Proposition 6. The Boolean Algebra B is generated by {Bn,m : m,n < ω}.

Proof. We allow B′ to be smallest complete Boolean Algebra contained in B that contain
Bn,m for all n,m < ω. We will be done if we show that An,η ∈ B′ for all n < ω and η < ωλ.
We will do this by inducting on ωλ. But first we make a few observations.

We define two sets Cn,η and Zn,η as follows

Cn,η = {f ∈ X : f(n) ≤ η}

and
Zn,η = {f ∈ X : f(n) < η}

We see that both of these sets are clopen and also regular open. Moreover, they have the
property that An,η = Cn,η

∧
Zc

n,η. So, if we establish that each Cn,η and Zn,η are in B′, we
are done. We start by fixing n < ω.

For the base case, we set η = 0. Then we immediately see that Zn,0 = {f ∈ X : f(n) <
0} = ∅ ∈ B′. Moreover, we claim that

Cn,0 =
∧
m<ω

Bn,m =

(⋂
m<ω

Bn,m

)◦

If that equality is proven, we certainly have Cn,0 ∈ B′.
So, assume f ∈ Cn,0. We show that f is an interior point of

⋂
m<ω Bn,m. Well, certainly

An,0 is an open set that contains f , and for any g ∈ An,0, we automatically get that g(n) =
0 ≤ g(m) for all m < ω. Hence f ∈

∧
m<ω Bn,m.

Let f ∈
∧

m<ω Bn,m. By way of contradiction, assume f(n) > 0. By assumption, we can
find an N > n such that U(N, f) ⊂

⋂
m<ω Bn,m. Then, we note that the function h defined

as

h(m) =

{
f(m) m ≤ N

0 m > N

belongs to U(N, f). Hence, h also belongs to Bn,N+1. This means that h(n) ≤ h(N +1) = 0.
But this is a contradiction as we assumed h(n) > 0. So, we get that f(n) = 0, and f ∈ Cn,0.
Hence, we get that An,0 ∈ B′.

For the induction step, assume we’ve shown An,ξ ∈ B′ for all ξ < η. Then we claim that

Zn,η =
∨
ξ<η

An,ξ

To see this, let f ∈ Zn,η, then f(n) < η. So f ∈
⋃

ξ<η An,ξ. And if f ∈
⋃

ξ<η An,ξ, then
f ∈ An,λ for some λ < η. Hence f(n) = λ < η, and f ∈ Zn,η. Therefore Zn,η =

⋃
ξ<η An,ξ,

and since Zn,η is clopen, it follows that Zn,η =
(
Zn,η

)◦
=
(⋃

ξ<η An,ξ

)◦
=
∨

ξ<η An,ξ. By

assumption, we have that Zn,η ∈ B′.
For n,m < ω and η < ωλ, we define a new set

Wn,m,η = Zm,η

⋃
Bn,m
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. In easier words, f ∈ Wn,m,η if and only if f(m) < η or f(n) < f(m). We notice that Wn,m,η

is certainly contained in B′ as both Zm,η and Bn,m are. To show Cn,η ∈ B′, we show the
equality of

Cn,η =
∧
m<ω

Wn,m,η =

(⋂
m<ω

Wn,m,η

)◦

In the forward direction, we assume f ∈ Cn,η, then f(n) ≤ η. Then, for each m < ω,
either f(m) < η or f(m) ≥ η ≥ f(n). So f will certainly either be in Zm,η or Bn,m

for each m, and we get that f ∈
⋂

m<ω Wn,m,η. And since Cn,η is clopen, we get that

Cn,η ⊂
(⋂

m<ω Wn,m,η

)◦
.

To show the reverse direction, we proceed by contrapositive. Assume f ̸∈ Cn,η. Consider
the set U(N, f) for every N > n. The function h defined as{

f(m) m ≤ N

η m > N

will lie in each U(N, f). But h ̸∈ Wn,N,η. So f is not an interior point of
⋂

m<ω Wm,n,η, and
will not be contained in the interior.

Therefore, we get that An,η is contained in B′ for every n < ω and η < ωλ. Since An,η

generate B, we can conclude that B = B′.

The only remaining step is to determine the size of B. We will use the previous properties
of Baire Spaces in order to bound the cardinality of the set of open sets in X to ascertain
the size of B.

Proposition 7. The size of the set of all open sets in X is 2ωλ.

Proof. From proposition 3, it’s clear that every open set U ⊂ X is a countable union of sets
Un such that Un is the union of elements from Bn, the disjoint clopen cover of X. There
are, at most, (2ωλ)n = 2ωλ different combinations of elements from Bn that we can use to
construct each Un. Thus, every open set may be written in at most (2ωλ)ω = 2ωλ·ω = 2ωλ

ways.
We also notice that for all nonempty proper subsets Y ⊂ ωλ, the set UY =

∏
n<ω Un

where U0 = Y and Un = ωλ for n > 0 is open. There are indeed 2ωλ amount of these open
sets. So we get that the cardinality of the collection open sets of X is precisely 2ωλ .

We conclude the following corollary by two immediate facts. Every regular open set is
also open, and the set UY constructed in the previous proposition is clopen and hence regular
open.

Corollary. |B| = 2ωλ
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